scale, The choice of coordinates was based on the assumption that there is a linear dependence of resistive
forces on material density, which was noted for the average values of the forces [4]. It was further assumed
that fluctuations of the forces produced by displacement of the solid phase during motion of gas bubbles is
determined by the filtration of an excess amount of gas above that needed to maintain the material in a sus-
pended state. In the assumed coordinate system, the experimental points obtained at various air filtration
rates for five different materials are grouped around a straight line described by the relation

O e
e

The greatest deviation of experimental points from the approximating relation does not exceed 70%,
which must be considered satisfactory for so unstable a system as a fluidized bed. It must be pointed out
that this relation also extends to experiments with large particles where the resultant gas bubbles become '
commensurate with the cross section of the column and plunger displacement of the material in the bed is
observed,

The relation obtained demonstrates the effect of material characteristics and of gas filtration rate on

maximum forces in a bed, but it does not reflect the effect of the geometric parameters of the system.

NOTATION

d, particle diameter; G, force acting on a body in a fluidized bed; U,, rate for initiation of fluidization;
U, gas filtration rate; p, material density; R, bubble radius.

LITERATURE CITED

1. H. Reuter, Chem. -Ing. -Tech., 38, No. 8§ (1966).

2, A, P. Baskakov and B. A. Michkovskii, Teor. Osn. Khim. Tekhnol., 8, No. 3 (1974).

3. A. P. Baskakov, B. V. Berg, and V. V. Khoroshavtsev, Teor. Osn. Khim. Tekhnol., 5, No. 6 (1971).

4, A. P. Baskakov and B. A. Michkovskii, Inzh. -Fiz. Zh., 27, No. 6 (1974).

5, A, 1L Tamarin, I. Z. Mats, and G. G. Tyukhai, Heat and Mass Transfer [in Russianj, Vol. 5, Nauka
i Tekhnika, Minsk (1968).

6. P. Rowe, in: Fluidization (edited by J. F. Davison and D. M. Harrison), Academic Press (1971).

FRAMEWORK CONDUCTION IN A GRANULAR SYSTEM

V. A. Borodulya and Yu. A. Buevich UDC 536.21

Equations are derived for the effective transport coefficients in a system of contacting spherical
particles immersed in a nonconducting medium,

A substantial contribution can come from the contacting-particle framework to the transport processes
in a high-concentration granular medium; for instance, this framework component can have a marked effect
on the total heat flux in a granular medium if the thermal conductivity of the particles is much higher than
that of the continuous phase (see [1, 2] for a survey of the experimental data). In particular, the theory of
thermal conductivity for granular materials [3] for A > A, always gives results for the effective thermal
conductivity systematically lower than those from experiment if the transfer by contact between the particles
is neglected, whereas theory agrees extremely well with experiment if Ay € A

Under certain extreme conditions, this component of the flux may be the dominant one. For instance, it has been
found [4] that this occurs for uranium and zirconium powders in various gases at pressures below 10~%-10~! mm Hg.
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‘ Fig. 1.A Particle in contact with adjacent
particles (a) and geometry of a single con-
tact (b).

The effects of particle contacts and the framework conductivity are even more substantial in electrical
conduction in an immobile granular material with permanent contacts between particles and also in a fluidized
bed where the particles are in contact as a result of collision if the continuous phase is an insulating medium
or if the electrical conductivity of the latter is much less than that of the particles [5].

The existing treatments of framework conduction are very similar and involve either approximate simula-
tion in terms of conducting cells of variable cross section [2] or numerical examination of the boundary-value
problem for the Laplace equation near a single contact [6, 7]. In what follows, the effective framework con-
ductivity of an immobile granular bed is considered via a simple ensemble-averaging procedure. The treat-
ment is simplified by considering the continuous phase as completely nonconducting, while the particles are
treated as spheres of identical radius a. As a rule, heat transport is envisaged, although the results apply
equally to the transport of any analogous quantity.

The particles are in random contact, the number of contacts varying from one particle to another, as
do the positions of the contacts with respect to the laboratory axes, which pass through the center of a particle,
That is, the number of contacts is random and the contacts themselves are specified by random angular
variables and have random microphysical parameters. If we average over many particles under identical
macroscopic conditions (i. e., an ensemble of particles), we arrive in the usual way at a concept of particles
subject to certain average microscopic conditions (i. e., trial particles). The contacts of such a particle with
its neighbors may be characterized in terms of a distribution, which is denoted in what follows by @ {8, ¢)
in terms of the angular variables 6 and ¢; this function is normalized to the coordination number ¢ of the
particles in the bed. Contacts with given 6 and ¢ are characterized by means of certain average micro-
physical parameters, which are single-valued functions of these angular variables. The distribution is de-
pendent not only on the parameters, but also on the quantities that describe the macroscopic state of an ele-
ment in the bed.

There is a direct method of deriving the relationship between the mean heat flux and the mean tempera-
ture gradient in the system by solving the thermal-conduction problem for a single particle with a specified
number of contacts of specified disposition and parameters, subject to the condition that there is no heat loss
over the surface of a particle apart from the contact areas, where different boundary conditions apply. This
approach allows us to derive a linear relationship between the mean temperature gradient and the mean heat
flux after averaging over the volume of a particle, The subsequent averaging over the ensemble in principle
results in the desired equation.

This traditional approach is very difficult to realize on account of difficulties in formulating the boundary
conditions for the contact areas and in solving the boundary-value problem for the thermal-conduction equa-
tion, since averaging over the ensemble with respect to ¢ (8, ¢) involves integration over a complicated con-
figuration space formed by the angular variables for all the contacts., A different and much simpler approach
is therefore used below.

First, the averaging over the ensemble is performed, and then the thermal-conduction problem is solved
for a particle whose contacts with other particles are described by @ (¢, @). It is clear that this approach is
justified because the above operations can be reversed in sequence, which itself follows directly from the
commutation of ensemble averaging and differentiation, as well as from the linearity of thermal conduction.
This feature allows one to overcome the above difficulties and to reduce the initial extremely complicated
‘problem to a series of elementary ones.
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The averaging is based on the observation that the macroscopic properties of a granular bed scarcely
vary over distances of the order of the microscopic scale, i.e., the sizes of the individual grains (this, in
general, is a necessary condition for one to use continuum methods in describing any transport process in a
heterogeneous medium). This means that the statistical weights and microphysical parameters of opposite
contacts on the trial particle may be considered as identical, so we have a trial particle whose surface has a
continuously distributed pair of identical diametrically opposite contacts. ¥ The statistical weight of this pair
is described by (6, ¢) = 1/2 @ (0, @), which is clearly normalized to /2.

We first consider the heat transport in a particle due to heat transfer through the contacts with adjacent
particles as in Fig. 1a; the line joining the centers of the contact areas forms an angie & with the mean heat-
flux direction in the bed (the x axis). Each contact has an area s or an indentation distance o (Fig. 1b), which
are relatedi by

s=2mab (8 La). 1)

In general, s and ¢ are dependent on the orientation of the contact with respect to the principal axes of the state
of strain in the bed (i. e., they are functions of 6 and ¢). Since there is no heat transport in the gaps between
the particles, the vectors representing the heat flux start from one contact area and pass to the other, while
remaining entirely within the particle; they also are tangential to the surface at all points, apart from the
points of contact,

We introduce a cylindrical coordinate system whose axes z and r are shown in Fig. la; we integrate the
local relation @ = —\, VT over the section of a sphere by a plane normal to the z axis at the point having
coordinate z to get

g =—aa@—2) (TTY ] (). @

Clearly, the heat flux q; through these contact areas is independent of z, while the mean value of the z com-
ponent of the temperature gradient is dependent on the position,

We average the temperature gradient over the volume of the particle, for which purpose the quantity
(VT) ;(z) appearing in (2) must be averaged with respect to z over the range —(u—0) to a—0; we use the
symmetry, with respect to the plane z = 0 and take only the principal term in the expansion with respect to
the small quantity ¢/a to get
a—d8

P g% dz g: 20

Ty = — ~— n— . 3

¢ ’ Am(a —9B) Y o — 2 2h, a0 8 )
i

Of course, the flux q; may be dependent on the orientation of the pair of contacts (i.e., on 6 and ¢), but this
is unimportant for the extraction from the integral with respect to dz in (3). Then (1) and (3) give us an expres-
sion for the flux:

% 2na® s 5
S = —— < S T L, V=
% In(1/v) & 4na®
where the mean temperature gradient in a particle appears on the right, while v represents the contact area

as a fraction of the total surface area.

L1, )

The quantities q’; and (V/T}El< in (4) relate to the temperature distribution due solely to the two opposite
contacts; we now derive the relation between the analogous quantities due to all the contacts of the particle
with its neighbors. It is clear that the above with the definition of f (6, ¢) and the linearity of thermal conduc-
tion together imply

2% T

gi = | do [ dogZ cos6f (0, o). 5)
0 0

Further, the quantity (VT); in (4) is equal to the mean temperature difference between the contacts along
the z axis as divided by the particle diameter 2a; Fig. la shows that this difference is equal to the true mean
temperature gradient (VT) x along the x direction for the mean heat flux in the system as multiplied by the

i Here, of course, we envisage random packing; if the packing is regular, the distribution is not continuous,

but in that case the problem is even simpler.
1 The contact geometry shown in Fig. 1b and implied by (1) corresponds to idealization of an actual contact,
since no allowance is made from the local deviation from spherical shape.
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projection on the x axis of the diameter of the sphere parallel to the z axis, i.e., by 2acos8, so (VT) Z=
(vT) % cos 6, and (4) and (5) give :

on 14
. : cos®0f (8, @) (6)
f = 2maPh, (VT 5 \do | do —1
qx na’h, (N >x‘s ch‘ In{i/v o, o)
In particular, the conditions of uniform state of strain (i. e., complete statistical isotropy in the bed) must
imply that v (@, ¢) =v = const and £(8, ¢) =£/8n, so from (6) we have

¢ =— ‘?“Z’z A In"1(1/v) ¢ T 3%, (7)

In the general anisotropic case, the dependence on the angular variables is substantial, and the coef-
ficient of proportionality between (VT % and q§ in (6) will be dependent on the direction of heat propagation,
so the choice of this direction influences the definition of the angular variables and hence that of the v(9, ¢)
and (6, ¢) functions, so (7) is replaced by the more general formula
tnal

MWN (T HH (8)

g = —

where g* and (VT) * are vectors, so N is a true second-rank tensor. It is clear that isotropic packing (in
particular, chaotic or random) implies that the principal axes of this coordination tensor, which render the
tensor diagonal, should coincide with the principal axes x; of the state of strain, while the eigenvalues N; can
be calculated from (6) by setting the x direction along the corresponding principal axis ;. It is convenient
to represent the eigenvalues in the form

Ny =n"1(Ijv) = —In"ty, (i =1, 2, 3), (9)

where Vi has the meaning of the effective fraction of the contact areas along the direction i. The v; can be
expressed in terms of the parameters that govern the distribution and properties of the contacts by means of
(6). In certain instances (particularly for beds of rough or irregular particles, where no rigorous analysis
is possible) it is convenient to consider these quantities as empirical parameters to be determined, for in-
stance, from experiment.

We now derive the relation between the mean heat flux q and the mean temperature gradient V; = V(T)
for the granular bed as a whole; first of all, we consider lines that join any two points on the particles and that
lie entirely in the dispersed phase, which gives V (T)= (VT); further,qisequal to the product of g* by the
mean number of particles that intersect unit area normal to the x axis. The latter is the result from dividing
p by the mean area of intersection between unit sphere and such an area, which is 27a %/3, so (8) finally gives

g= —AVT, A 234 nZph,N, (10)
where the eigenvalues Aj of the tensor A act as thermal conductivities along the axes X4

Equations (9) and (10) relate the effective framework conductivities Aj fo the conductivity of the particles
and the packing characteristics; they provide major conclusions on the effects of various observable quantities
on the transport, For instance, we may examine the effects on A; from the corresponding principal normal
stress o and the particle size, for which purpose we express v; in terms of these quantities by means of the
solution to the corresponding contact problem in the theory of elasticity (a Hertz problem in the present case).
This solution implies [8] that

v, ~ F}3E=23g=413 (11

where the force F; acting on a single contact in direction i is proportional to "i“z’ and so

l_zc(i)m, m-t ———mC—,L—?—ln—E—z—Q—ln—E——, (12)
v o; v; 3 o 3 o

i i i

where C is a coefficient of proportionality of the order of 1, which in most instances can simply be neglected.
Then (12) illustrates the relationship of Nj and Aj from (9) and (10) to the corresponding compressive stress
oj. The state of stress in a real bed is usually anisotropic, so when we speak of framework conductivity the
bed is to be considered as a body with anisotropic thermal or electrical conduction.

Also, (12) illustrates how the framework conduction is dependent on the speed of an ascending flow of
continuous phase passing through the bed. If we neglect the resistance, which does not vanish even if the
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weight of the particles is balanced by the upthrust, the stresses o;(u) can be described approximately as fol-
lows:

010 = L= 0,0, i~ 13
where ® = 2 and » = 1 for the limiting cases of large and small Reynolds numbers for a single particle,

respectively. The stresses become zero when the speed reaches the value corresponding to onset of fluidiza-
tion u;, which satisfies ¢(u;) =+v; a simple calculation from the above formulas gives

A A .
B,—23In[1— (u/;o)‘] "
A= g, B =2m-Lt_ _mc
8 3 0,(0)

This implies that the A decrease monotonically as u increases, and the more rapidly the smaller x, i. e,

the smaller the particles, This decrease is of logarithmic type, and it is not particularly large if u is not

too close to u;, but the A; rapidly become zero* as u tends to u;. The dependence of u is the more pronounced
the smaller Bi in (14), i.e., the higher the initial stresses in the bed. In particular, the form of the relation-
ship tends to vary with the level in the bed, and these general conclusions are confirmed by experiments on
the electrical conductivity of beds of steel spheres [9].

The arguments leading to (11)-(14) deal only with the regions of direct (physical) contact between the
particles, which is sufficient for the electrical conductivity of a bed in an ideal insulating medium and also
for heat transport in a granular bed at very low pressures or very low temperatures,

It also follows from (12) that the framework-conduction coefficient should not be dependent on the particle
radius, { :

The contribution from the framework conduction can be estimated by putting the flux of (10) into cor-
respondence withthe flux due to the conductivity in the continuous phase, provided a correction is applied for
the distorted isotherms and flow lines. I we use the result of [3] for this flux, we find that the contacts are
important in the transport if v satisfies the inequality

v 3B(o) Ay

where B(p) is the ratio of the effective conductivity of the bed on neglecting the contacts between the particles
to the conductivity of the continuous phase when A, > Ay; for the values of p of interest given in [3] we have

Blp) ~ 10.

In the general case, the v; are dependent not only on the stresses in the bed, but also on the parameters
representing the continuous phase and the rate of the transport [2]; for instance, the effective contact areas
increase somewhat in heat transfer at low gas pressures on account of the annular regions near the direct
contacts in which the distances between the surfaces are comparable with the mean free path of the gas mole-
cules, in which case there is heat transfer by the free-molecule mechanism. Radiative heat transfer can
result in the same effect, and this is important at high temperatures. Therefore, the effective areas of con-
tact may exceed substantially the areas of physical contact.

1 _8afp 4y (15)

If an electrical current flows in such a bed (charge transport), electrical breakdown can occur in the
narrow gas gaps separating the particles, and therefore the vj and the effective conductivity will increase with
the current, as has been observed [5]. The same applies to any other change in the external conditions that
facilitates ionization of the gas between the particles, e.g., the specific resistance of the bed should fall as
the gas humidity and temperature are increased, as has been observed [10]. The available measurements on
the effects of temperature, current, and other factors on the electrical conductivities of granular beds indicate
that this theoretical model provides a good qualitative description. For instance, one expects that the effects
of the current will be less at high temperatures, since the conditions are already favorable to ionization; further

* In fact, of course, the effective conductivities do not become exactly zero, because some contacts persist
in the bed even if u = u,, and the number of these is the larger the greater the deviation from ideal spherical
form. Some part is played also by the resistive stresses, which do not vanish for u =u,,.

+0f course, this argument neglects the possibility that the type of packing (e.g., the coordination number) is
dependent on the particle size for a given macroscopic state of stress.
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the electrical conductivity will be dependent on the ionization potential of a gas more markedly the lower the
humidity and temperature, and so on.

So far, the particles have been considered as identical, while the thermal conductivity of the continuous
phase has been taken as close to zero; if we wish to extend the theory to a sitnation where even one of these
assumptions does not apply, it becomes necessary to solve several different independent problems, and the
treatment falls outside the framework of this study. Here we merely briefly note some major features that
may occur.

We first assume that the conduction in the continuous phase is comparable with the contact conduction,
i.e., the quantities in (15) are comparable; in that case we can use the general method of [3] but with in-
dependent heat transport for the dispersed phase. As a result, the effective thermophysical parameters of
the dispersed medium are again determined by solving the problem for a trial particle, but the treatment is
then more complicated than that of [3] because the temperatures ofthe phases cannot be considered as identical
even under steady-state conditions, so it is necessary to consider heat transfer from a trial particle not to
one fictitious homogeneous medium but to two such, which stimulate the individual phases and which are repre-
sented by different transport equations.

Let the bed consist of spherical particles of different sizes but composed of the same material; if we
neglect the heat transport through the continuous phase, the problem is readily reduced to that examined above
provided we introduce the distribution f'(¢) for the radii of the spheres and the distribution ' («; «') for the
radii of the particles « in contact with the particle of radius «'; on the simplest assumption (an entirely random
structure) we have {'(¢; ¢') = {'(¢). In that case, the properties of the contacts will be dependent on the radii
of both contacting particles [the relation replacing (1) is readily derived], and instead of £(8, ) we have to
consider the distribution £(6, ¢; a') for the contacts of particles of radius «' with other particles of radius
u such that

1O, ¢ a, a')dodp = = " (a; a”),
y (16)
IF®. ¢ a, aYda =f @, 9 a) [0 o a)da’ =6, o),

where (6, ¢; «') is the distribution of the pairs of contacts for particles of radius «' with particles of any
radius, with a' treated as a parameter. A simple argument completely analogous to that above gives us

2n T
2

) e ; ~ 2 . . 2
gi = 2mh, (\'/'T);‘J de \ a8 \ da_s dn 2 f(0, ¢; a,a’) cos®® , (17)
§ vy oY

Infi/v (0, ¢; a, a’)]

which replaces (6); the transfer from (17) or from equations following from (17) of the type of (7) and (8) to an
equation of type of (10) is elementary: it is only necessary to determine correctly the mean area of the in-
tersection between any particle in the bed and a plane by averaging the quantity 2m«?%/3 used in deriving (10)
over the distribution f'(«).

It is more complicated to incorporate differences in physical properties between the particles; to
illustrate this we consider only the transport in a binary mixture of particles identical in size and such that the
transport coefficient for particles of the first kind is A, (different from zero), whereas the value for the
particles of the second time is zero. As before, we neglect the transport in the continuous phase and in-
troduce the fraction o of conducting particles. This situation is of direct practical interest, since dilution of
conducting particles with inert ones is sometimes used in operations with electrothermal granular beds to
increase the specific resistance and thus to reduce the heat release on applying a voltage. Inthatcase,we have
to consider the effective conductivity of a network of linked identical resistors that stimulate the particles,
with the structure of the network defined by the bed packing features, while there is a probability 1—a that
particular particles may not be involved in the transport. This is a classical node problem in flow theory
(see recent reviews in [11, 12]), which has previously been used for locally inhomogeneous semiconductors,
insulators, ferromagnetics, and so on, although the treatment is extremely complicated and requires addi-
tional analysis. The problem becomes even more complicated if the particles of both types are of finite con-
ductivity or if there are several types of particle,

NOTATION

A, Bj, parameters in (14); a, particle radius; C, coefficientin (12); E, Young's modulus; F, compression
force; f, ', ", local distribution fluxes; Nj, eigenvalues of coordination tensor N; Q, g, local and mean

173



heat fluxes; s, area of contact; T, temperature; u, uy, filtration speed and fluidization onset speed; x;, stress
axes; o, proportion of conducting particles in binary mixture; 8(y), ratio of effective conductivity of medium
containing noncontacting particles to the effective conductivity of the continuous phase for A; > Ag; v, particle
density minus specific buoyancy; 6, compression length; £, coordination number; 8, ¢, angular coordinates

of contact relative to mean flow direction; », exponent in (13) and (14); A4, eigenvalues of conductivity tensor
A3 Ay Ay, conductivities of continuous and dispersed phases; v, fraction of surface area represented by a
single contact; s, volume content of dispersed phase; o, compressive stress; T, mean temperature; ®, dis-
tribution function; ¢ (u), hydraulic force per unit particle volume; *, values referred to one particle; { ),
averages.
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A COMBINED NUMERICAL METHOD FOR DETERMINING
THE CONDUCTANCE GF COMPOSITE BODIES

G. N, Dul'nev, M. A. Eremeev, UDC 536.242: 518.61
Yu. P. Zarichnyak, and E. N. Koltunova

We propose a new numerical method (a combination of the method of grids with Rayleigh's
method) which is very promising for the caiculation of potential fields, fluxes, and conductance
of composite bodies, especially in the case of components with sharply differing properties.

We consider a two-component region in the form of a cylinder made up of two hemispheres which are in
contact at the point A (Fig. 1). As an example, we consider the problem of determining the effective con-
ductance, say the effective thermal conductivity, of the composite region, We denote the thermal conductivity
of the material of the hemispheres by A; and that of the material filling the gap between them by A,, where
Ay and A, may be substantially different. Suppose (for the sake of definiteness) that the bases of the cylinder
are isopotential (isothermal) planes and that the lateral surface is impenetrable to the streamlines (an
adiabatic surface). Such a composite system is often used for constructing a model of the structure of granular
materials when we calculate their effective coefficients of generalized conductance (thermal conductivity,
electrical conductivity, dielectric permittivity, magnetic permeability, etc.).
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